Minimal 3-folds of small slope and the Noether inequality for canonically polarized 3-folds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Noether Inequality for Smooth Minimal 3-folds

Let X be a smooth projective minimal 3-fold of general type. We prove the sharp inequality K X ≥ 2 3 (2pg(X)− 5), an analogue of the classical Noether inequality for algebraic surfaces of general type.

متن کامل

Minimal Threefolds of Small Slope and the Noether Inequality for Canonically Polarized Threefolds

Assume that X is a smooth projective 3-fold with ample KX . We study a problem of Miles Reid to prove the inequality K X ≥ 2 3 (2pg(X)− 5), where pg(X) is the geometric genus. This inequality is sharp according to known examples of M. Kobayashi. We also birationally classify arbitrary minimal 3-folds of general type with small slope.

متن کامل

Weak Boundedness Theorems for Canonically Fibered Gorenstein Minimal 3-folds

Let X be a Gorenstein minimal projective 3-fold with at worst locally factorial terminal singularities. Suppose the canonical map is of fiber type. Denote by F a smooth model of a generic irreducible element in fibers of φ1 and so F is a curve or a smooth surface. The main result is that there is a computable constant K independent of X such that g(F ) ≤ 647 or pg(F ) ≤ 38 whenever pg(X) ≥ K.

متن کامل

Inequalities of Noether Type for 3-folds of General Type

If X is a smooth complex projective 3-fold with ample canonical divisor K, then the inequality K ≥ 2 3 (2pg − 7) holds, where pg denotes the geometric genus. This inequality is nearly sharp. We also give similar, but more complicated, inequalities for general minimal 3-folds of general type. Introduction Given a minimal surface S of general type, we have two famous inequalities, which play cruc...

متن کامل

Non-Abelian Brill–Noether theory and Fano 3-folds

The number h(L) of linearly independent section of a line bundle L can be used to define subschemes of JacC, called the Brill–Noether locuses. These have been studied since the 19th century, since they reflect properties of an individual curve that are beyond the control of the Riemann–Roch theorem. In this article, we recall this theory briefly in §2, then generalize it to the moduli spaces MC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2004

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2004.v11.n6.a9